Search results for " archaeal model"

showing 1 items of 1 documents

A human CCT5 gene mutation causing distal neuropathy impairs hexadecamer assembly in an archaeal model

2014

Chaperonins mediate protein folding in a cavity formed by multisubunit rings. The human CCT has eight non-identical subunits and the His147Arg mutation in one subunit, CCT5, causes neuropathy. Knowledge is scarce on the impact of this and other mutations upon the chaperone's structure and functions. To make progress, experimental models must be developed. We used an archaeal mutant homolog and demonstrated that the His147Arg mutant has impaired oligomeric assembly, ATPase activity, and defective protein homeostasis functions. These results establish for the first time that a human chaperonin gene defect can be reproduced and studied at the molecular level with an archaeal homolog. The major…

Models MolecularProtein FoldingProtein ConformationProtein subunitMutantMolecular Sequence Datahuman CCT5 gene mutation molecular dynamics neuropathy archaeal modelSequence alignmentGene mutationBiologyArticleChaperonin03 medical and health sciences0302 clinical medicineProtein structureHumansProtein Interaction Domains and MotifsAmino Acid Sequence030304 developmental biologyGenetics0303 health sciencesMultidisciplinarySettore BIO/16 - Anatomia UmanaArchaeaSettore CHIM/08 - Chimica FarmaceuticaChaperone (protein)Mutationbiology.proteinThermodynamicsProtein foldingProtein MultimerizationSequence Alignment030217 neurology & neurosurgeryChaperonin Containing TCP-1
researchProduct